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NOTATION

Function representing the ship surface
Function representing the free surface
Acceleration of gravity

Defined in (7], (9], and [11]

Green's function
Draft of the ship

= g/V®

Length of the ship
Intersection of the plane { = 0 and n = £(§,§)

- Normal vector on the surface into the flow

Pressure
Defined in (8], [10], and [12]

Wave resistance

Free sirrface
Ship surface

Uniform veloclty at infinity

Right handed rectangular cartesian coordinates
as shown in Figure 1

(8 -x)cos8 +(n-y,) sin @
Flctitious friction force

Small parameter representing the beam length ratio
of a shlp

Transformed coordinate system
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Subsecript
J represents coefflcients of eJ in the expansion
of the attached quantity
Superscript
* represents the corresponding quantity in the

transformed space
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SUMMARY

The free surfacé condition of the surface wave 1is con-
sidered on the free surface itself instead of the mean free
surface, by the use of a coordinate transformation, together
with the scheme of a systematlic expansion in a small parameter,
Thus a higher order shlp wave theory 1s developed. The most
common practical case of a slender ship with an almost flat
bottom is especially treated in detail. The lowest order re-
sult is the same as that given by Michell's theory. The next

higher order potentlal and wave resistance are derived ex-

plicitly.




- e eGP ST o

HYDRONAUTICS, Incorporated
-2-
INTRODUCTION

Since Kelvin (1887) found the solution for linear water
surface waves and Michell (1898) formulated the wave resistance
due to a thin surface ship advancing in an inviscid fluid, many
experimental and theoretical works on this subject have been
performed by various ship hydrodynamists. Tr waves and the
wave resistance of many ships have been calcul.ted and compared
with experiments. The theory of minimum wave resistance has been
developed and waves from the bow, the stern and the shoulder of a

ship have been analyzed.

These theorles are based on solutions of the Laplace equa-
tion with linearized boundary conditions on both the free sur-
face and the ship surface. The theories are mathematically ele-
gant and certalnly very significant in the development of the
ship wave theory. However, the general agreement with experiment
has been relatively very poor (especially for practical ships),
as compared wlth other llnear theories such as have been devel-

oped 1n aerodynamics and for cavity flows.

To improve this sltuation the development of higher orcer
wave theory has been suggested in terms of a systematic expan-
sion in small parameters (Stoker, 1957). Sisov (1961) actually
formulated the second order wave resistance for a thin ship where
the beam-length rati- "= crusidered to he a fundamental small pa-
rameter as 1n Micheli. o theory. To improve tne comparison be-
tween wave theory and experiment, the streamline tracing tech-

rique was recommended (Inul, 1957), and also a slender ship
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theory has been developed (Vossers, 1962; Tuck, 1963; Maruo,
1962; Joosen, 1964). Wehausen (1964) has also considered an ex-
act formulation of the ship wave problem and showed that for a
thin ship with small draft, the most important higher order ef-
fect can be represented by a line integral along the intersec-

tion of the shlp surface and the water surface.

Although no proof has been made for the convergence of the
expansion of the potential in power serles of a small parameter
as in Sisov or Wehausen's work, this expansion scheme 1s common
in applied mathematics. (Lighthill, 1954, Wehausen, 1960,

Van Dyke, 1965). The usual expansion problems are made more dif-
ficult in the case of ship waves because of the unknown position
of the free surface boundary where it 1s necessary to apply the
free surface boundary condition. In addition, the free surface
is internally bounded by the ship surface where the usual rigid
boundary condition must be applied.

To resolve the difficulty connected with the unknown free sur-
face position, here we first transform the coordinates such that
{ = 0 always represents the free surface. Then, we apply the
scheme of an expansion in small parameters to all of the physi-
cal quantities; in thils development, first the beam-length ratlic
was assumed small and then, in addition, the draft-length ratl.
was assumed small (i.e., the ship is thin and then slender).
After substituting the relevant series in our governing equatlon
and the toundary conditions, we eguate all the same order terms
in each equation. Then the governing equatlion §h:ch i1s the

Laplace equation in the physical space tecomes, ir the transformed
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space, Laplace equations 1n the lower orders, ard Polsson's
equations in the higner orders. In each order, the problem 1is
a well defined linear boundary value problem whose solution is
available by the use of Green's theorem, with one well known
Green's function which is equivalent to a potential due to a
source under the lineariied free surface. The higher order so-
lutions depend upon the lower order solutions. Therefore, we
first solve the lowest order problem, and use thls solution for
the next higher order problem, and so on. Thus, the potentlal
and the wave resistance for both thin ships and slender ships
are formulated explicitly here in both the first and the next
higher order.

The lowest order solution is the same as Michell's solu-
tion whether the ship is thin or slender, as Wehausen showed.
The next higher order solution is relatively simple espeéially
for the case of fast slender ships. This 1s due to three ef-
fects: the effect from the line integral (earlier mentiored)
which 1s Jdue tc tne free surface bournded internally by the ship;
the effect from the change of submergence due to the wave; and
the bot-om effect. The secornd order solutions for the case: of
~hin ships, and of slow and medium speed slender ships (orainary
merchany ships) are a li%%le more compllcated since the non-
lirear effect cf free surface needs to te included, Singuiari-
“les at the bow and stern, especlally at the intersection with
“re free surfice are carefully analyzed. For simpilelty, 1<
trim ror &ir age !s consldered, although theSe'efrects car. te

added witho ¢ toc much difficuley.

2
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SISOV'S HIGHER ORDER WAVE THEORY

We consider the right-handed rectangular coordinate
0-X,¥,Z or O-xy,y1,21 and the surface ship y = f(«4,z) as in Fig-
ure 1, in a homogeneous, inviscid, irrotational, and infinitely
deep fluld with a free surface. The flcw at infintly 1s con-
sidered to be uniform with the velocity U, and there exists a

perturbation veloeity potentlal @, which satisfiles
o =0 1l
and the proper boundary conditions on the free surface and the

formula

= ;%—ff[iv(xx.yxm) G (“x”v" v2L 3XsY s 2Z)
S R

- ¢P(X:o¥xtzz) G(xxoﬁz,zg;a;y,z)] isS 3

where the subscript rn indlcates a partlal) derivative in tne i!-
rection of the inner ﬁcrmal'inzeﬁzhe rluid at the whole bouri-
ary S{x,,¥i1,21) including the rvee surface S and the ship «.r-

face S_ in Figure 1. G is.:he Green's finction, which 135 rar

monlc everywhere in the fiuild except 2t = pot-t (x,vea) = (X ov:, o)

where it has 3 singularlity 1like

-~

ship surface, with V9 = 0 and ¥ = C at infinity. Then by Green :
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N
1/ (P + y5n ) + (227 )
) (31
and VG =0 , and G =0 at infinity
in z < 0 g

The bouné-ry conditions for ¢ on the free surface z = F(x,y)

are: the kinematic condition

(Vamx) F, - wyFy +9, =0 [ 4a]
and the dynamic condition
F(x,y) - v 0 + = (9,249 249 2) = 0 [ 4p]
g X 28 X 'y z

The boundary condition on the ship surface y = f(x,z) 1.

the kinematic condition

(VA;ox)fx + @y -9 f =0

(5]

or ® - n.-vVa=20

For convenlence we do not consider here any trim or sinkage of
the ship. We consider a thin ship symmetric with respect to the
v = 0 plane, wlth sm2il slopes to the y = O plane, and a small

value of the half beam-length ratio, €; and assume the series,
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P(x,y,2,€e) = ep (x,y,2) + G’wa(x,y:Z) + --

F(x,y,¢) = €Fy (x,y) + €?Fa (x,y) + --

f(x,2) = ¢f) (x,2) £ée]

By substitution of [6] in [4a), [4b], and [5], and using

Taylor's expansion, we obtain (see e.g. Sisov, 1961) comparing

J

the terms of ¢¥,

K@y, + @0y = Py (x,y) on S.q [7]
(k= &/V)
for the free surface condition

® = Xy2Z
Jy qJ( )

£8]

=0 on = 0; outslde of S in the fluid
cpr {y ’ pys }

for the'ship surface condition, where SPF and Spys indicate the

projection of SF and SS on z = 0 and y = O planes respectively,

Pl(x:Y> =0 (9]

G (x,2z) = -Vfx (10]
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1 3 a, 1 2 v
pa (x,y) = 7 \Bix +thy + 3 P12 “z P1x ko%z+ P1 xx (11]
X z
as (x,2) =(C01x fl) +@>12 fl) [12]
X z

In general, pj(x,y) and q,(x,2z) for jJ 2 2 are represented in

J

terms of known functions including the obtained lower order solu-
. <
tions (cpi ;1 3} .

Sisov (1961) obtained two Green's functions for the free
surface singularities on z = 0 and for the ship surface singu-
larities on y = O respectively, both satisfying the first order
free surface condition [7) and [ 9] except at the singularities.
Thus, 1f we consider that the boundary conditions everywhere
on thé z = 0 plane and the y = 0, 2z = O haif plane are glven as
in [7) and [8], respectively, the combination of the two Green's
functions will lead us to the solution of Sisov (1961).

The problem, however, 1s that the free surface 1s only out-
side of the ship boundary and the actual submergence of the ship

depends upon the wave height. Thus, the boundary conditions cn

PF
z = 0 plane and on the half y = 0 (z £ 0) plane. In addition,

S and Spys are not necessarily those given everywhere on the

in practice, our ships are not thin and the sliope to the x,z plare

is not everywhere small,
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To overcome these difficulties we will try another formu-

lation of the same problem with a different approach.

COORDINATES DEFORMATION AND FORMULATION OF PROBLEM

We consider a transformation of the (x,y,z) coordinates

to the (§,n,{) coordinates

- Thus, ¢ = O represents the

at the beginning, we do not know the wave height F(x,y).

by

g
n [ 13]
¢ + F(X:y)

1]

free surface z = F(x,y). Of course,

Our

governing equations and the boundary conditions {11, (4] and (5]

can be represented in terms of the §,n,{ coordinates through

substitution of

9 (x,y52) = o{3,n.¢

X
Pxx = wgs T C ECFX
%y = 9 - 0Ty
®yy = % - Py
- .
%22 = ¥

= % - ot - o*
Px =% % "%y

+ F(XJY)} = CP*(@:‘%C) R

B @EFxx * c‘)ZECFXQ
} [14]

- Q*F  + ¥ F?
cpC yy Pty
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in [1], (4], ana (5],

transformed space

Now if we use the series [6] in the

~
Aop* = g s
# * #
* - ¥t #*
Pin = 9] (8,€) S
where SF* and Sg indicate the corresponding surfaces of SF and
SS in the transformed space.
d =0 )
i
p* =0 ) [ 16]
1
* - ~
q1 - fog J
\
*(E,0) = ™*{x,z - F(x,y)} = £(x,2)
= v 1 4.3 3 3 -
F(§,n) = F(x,y) = s %% (@, +ofref) ? [17]
Fi(8,m) = < o on ¢ =0
g 18
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da (8,M,€) = 2%y F 4 2% Fo o+ 0% (lex + Flyy)

199 g = 1 *2 1 # * | i '
3(8.n) = 3 ( Ple + ) °°1g : + (2% Py + °°1¢F1;<y) ) (18al
q:(g ) * L * #*
€)= ( 1t ‘plc g) VT Ty )
v 1 2 3 B\ Vo« Vo u
Fa (x:5) = o 9o g @’1 Pyt °"1z) g P2et 7 Y1t ix
A TR [ 18b]
2g \ "18 €
dJ, pg #* for j 2 2 are represented 1n terms of known func-
tions including the obtained lower order solutions, {o* ; 1 < jl.

5
We drop the superscript * except in the case of confusion.

For a general ship which has a sm2ll draft-length ratio as
well as a small beam-length ratlo, the boundary condition cor-
responding to [8] and the order analysis needs to be dealt with
carefully. The exact boundary condition on the ship surface Ir.
X,¥,2 coordinates 1is

fo
® = - on 8 L19]

n s
Wdf1+r RS
X 'z
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By transformation to the &,n,{ coordinates
N/ 3.0 8
‘l+fg +fC

_ ) 3 .
0, = e ) r 9 F,- F (cpC g+ cpgfc) VE+VE F,p on S*

{ 20]

SOLUTION FOR EACH ORDER POTENTIAL

The solution for each j can be expressed using Green's

formula in the transformed space,

| vy = -l;;l;ff [cpj(m »V1521 ) Gv(XI,YIazl 38,M,6)
S*

CPJv(Xl:YU-’h) G(x1,y1 521 ;g,n,C)} ds
1 n
'm?f”w%d* (21]
D*

where the Green's function G satisfiles

Ggg + koGC =0 on (=0
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in addition to the usual properties previously mentioned in [3].
Such a Green's function G(x1,¥1,2; ;8,M,§) 1s well known to
represent the potential due to a poi:t source located at

(x15¥1521), (see e.g., Lunde, 1952).

1
G(XI 2 Y124 ;g,n,C) = -1-:1— - ..ri_
T e -k|C+z |+ 1kw
k ]
_ -?0 Re[fsec 8e a8
k-kosecaa-;u.l secé
~T O
T/2 -kosecae{l5+z1|}
- = - =+ bk e sec®9sin{k wsec?®8)asd
rn ?j o
-m/2+46
T/2+56 ®

Wik sec®8sin(m|C +z, | -meos (m|¢+z)}
_ g. 48 dm e o}
T koa sec*® + m°
-w/2+6 °
[ 23]
where

rn?= 8-x) + (n-;u ) + (-2 )?

= -x ) + (-9 ) + (C + 2 )

w = (§-x,) cos® + (n-y, ) sin

fictitious friction force which is put tc zero after
integration,

| =
"
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G, (x2 ,y1,0;8,n,§) represents the potential due to a Kelvin's

1

source or a pressure point on the free surface. Using the con-
ditions [22] for Green's function and the boundary conditions

for mj, we obtain
dS = - G - dx; d
mJGv vaG ¢J 2, Gszx 1dyr
* »*
SF SF
s 1 o l .
_"‘ kO ax1 cp.jGX]. - CPJle + kO pJG dx, dy,
*
SF
= = L ,G. - @ G dy, + L p*G d»; dy:. [ o3%]
k J x Jx k J LY
O o]
1 *
SF

where {4 represents the intersection of S; and S;. Theref:re we

can write,

- J. _ L1 J .
Q =L € wJ = o P> wJGV wJVG dS
Sl
s
R 6. -, 6 gy . pr EIL
ko J A J ax ! “d "
o} - '
SF
- Gd,dt Lo
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Now we may consider a Taylor's expansion of the Green's
function at n = 0O,

\
ea 3
G(xl €8 ,2y ;g)nsC) = G(X1 10,2, 3g:ﬂ:C) + —;-.L- G + e
nn
-Gx fx + G - Gz fz
Gv(xl ,€f1 22y 3§:ﬂ:C) = 4 1 L 1 A P [251
1+f 3 +¢ °
Xy 2
= ‘foylyl(anO:zx;g,ﬂ,C) + 0(¢?),ete. |

Since we do not know S; a priorl we consider the sequence

of ship surfaces which converges to S;, or

S;s » Sts --- S; . {26]

where S;s represents the ship surface without any wave. Thus
for each ¢J we can have a sequence of solutions which may even-
tually have the domain of integration S;. The problem for the

first order potential ¥, on S;s is exactly the same as the firse

order problem in the case of Sisov's theory.
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SLENDER SHIPS WITH AIMOST FLAT BOTTOM

When we consider that the draft of the ship is of the same
order as the beam in [24], the draftwise integration of the in-
tegrand O(eJ) becomes 0(eJ+1). Thus, in [24], the lowest order
of ® 1s 0(¢®) on and outside of the ship. If the ship has al-
most a flat bottom, ?, s 0(¢) only near the ship sides (from
(20]).

With all these considerations including Equations [24] -
(261, 1f we collect the coefficients of the same order eJ from
(24] we can have ¢
is

for each j. Thus the lowest order solution

J

~H
2 ve? ‘
30

where H = €H; and L lndicates t.e draft and the length of the
ship respectively.

The next higher order solitlon would be

Ve »
@ = ¢?gy g = > fj Py, (xi,2.)6{x1,0,21 ;x,¥,2-F; (x,y)}dz ax,

S*cns
L
¢? A X .
- 5S¢ [‘j'fz(Xx»‘ﬁ)¢h(xzn0’-H}G,1\X;.C.-H;x.y,z) dx,
o

L
1 5 ~ daf, .
B s -!-{;‘(‘=’f=»M)ka{x;.f;,b.r.y.z)- ¢ux{x;,f1,c)é}5;?'3xz]

° [ 28]
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The first term of the right hand side in [28] is different from
(27] only in the domain of integration. Thus, the influence of
the change of the submergec ship surface due to the wave ap-
pears 1n the change of fix(x,z) on St into fig(8,{) on St

which 1s bounded.by'a straight plane { = 0 at the exact free
surface and the wavy ship bottom in the §,n,{ space. If the
ship 1s wall sided, the only influence is from the vicinity cf

the bottom but not from the free surface in Sfs.

The second term in the right hand side of (28] 1s the fiat
bottom effect. Here the Taylor expansion of @ which is symmetric
with respect to n = Ois used., It represents a distribution of

vertical doublets with strength proportional to fi9;.

The third integral in the right hand side of [ 28] is tne
line integral along the line of intersectlon betiween the snip
surface and the free surface. This indlcates the line distrit .-
tion of singularitles o¢n the free surface, and will be lnvesr!i-
gated further in the followlrg section. This Is particularly
lmportant_becanse'ev”n for a thin snip with deep draft, 9 wlll
be of the same orde, as the case of the smail draft when the

ship speed is low.

The wave helght istﬁ(i'i, and from 17i

Pl oy) = Sax(xiyy0) {20

sulficiently apart from the siender chip. On the ship sirface,

it may be written
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_ N
Fb(x:fl) = é‘{?@ax(x,fx:o) - Y;‘flxaj : [ 29b]

~except rear the bow and the stern;
' THE LINE INTEGRAL ON THE FREE SURFACE
The third integral in the right hand side of Equation [ 28]

L R
I =) {pa(x,f1,0)G (% ,f1,0,E,MC)- 0ax2 G )T dxy (30a]
kO X1 dx,

o

can be internreted as a potential due to the distribution of
doublets and sources on a line n = f1(§,0) whose strengths are
proportional to ¢z f) x, 1/kO and @3, fix, respectively. It is

well known that a doublet distribution on the free surface is

the same as a pressure distribution on the free surface (Wehausen,
195G; Ursell, 1960). Therefore a distribution of sources on

tne free surface can also be interpreted in terms of a corres-
ponding distribution of pressure on the free surface. For ex-
ample, we consider a smooth distribution of pressure p(E,ﬂ) on

a certain domain D on the free surface { = O of an otherwise

uniferm flow, and p = 0 on the btcundary of D. Then

l V r Al
= ?ng‘[‘[pG dxldyl— r ?fj Dxlu Xmdy1

D
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Namely, the potential anywhere in the fluld can Le expressed
elther by a dcublet distributior on { = O with strength pro-
portional to p(€,n) or a source distribution on { = O with
strength proportional to pg(g,n). Singularities on the free
surface need speclal attention because it 1s known that when

a pressure polint or a point doublet 1s located on a free sur-
face, the flow behavior is singular not only at the point 1t-
self but also on 1its patn line and the corresponding wave
resistance blows up (Lamb, 1932; Ursell, 1960). The same kind
nf singular behavior takes place for a point source on the free
surface and the corresponding wave reslstance becomes also in-

finity (Yim, 1966).

By an integration of [30a) by parts

L

1
I = I{—_ sz flx G‘(Xl :fl ,Oyg.anC)
O

X3 =0

- ——j (93 f1x, ) + P2y flxl} dx, [30b]

neglecting higher order terms. The first term of the right

hand side in [30b] indicates the potential due to a point source
located at (xl,fl,o) on the free surface. This would 1lnduce the
singular behavlor mentioned before unless fix, = 0Oat x, = 0

and x; = L. Therefore, in thls report we will consider the ship

surface y = f(x,z) which 1s sufficiently smooth in - < x < o,

W e B e e e e 3 g e b s g
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near the free surface, In an engineering approximation of the
line integral for the lower orders, the free surface water-
line of a ship of finlte entrance angle may be approximated by
a cusped smooth waterline sufficiently close to the original
one, since there carn never exist sucn singular phen.rena 1in the
actual case of real fluld. At present, no meaningful mathe-
matical limit of the wave resistance or the wave height due to
elther a polnt source or a point doublet on the free surface is
avallable. This is discussed more fully later in the section
entitled Singularities at the Bow and Stern.

WAVE RESISTANCE

The wave resistance R can be calculated by the integration

of pressure p from the Bernoulll equation,

_ _ 21 2 2 2
P=p {wa 2g -5 (P + 0"+ 0, )} (31]

2 3 e - 3P
SO TP, )} f dx dz [32]

il
%
—

N

o]
b

{

N

ma

|

!

8
S

—;mvm o SEYINNG S W e e e ey g aems i g PO




HYDRONAUTICS, Incorporated

~21-
If we put
R=¢R +¢°Rs + €*Ry + €®Rs + ---

the lowest order wave resistance for a thin ship will be

L .o
Rz =jjgpvm1x fix dx dz
-H

o)

since
L

fflxdx = 0

o)

This leads to the Michell's wave resistance formula. The

order wave resistance due to a slender ship 1s

L _o

Re =[ IQP{VCPQX- ’é"vaflxa} flxdx dz

0] -H;

in which only the part due to regular waves wlll remalrn.

this is also the same as the Michell's wave resistance.

(e}
(W]
W
[

[34]

lowest

(35]

Thus

WW B —— ; ———y AN ™~~Y  F=: W oy, T
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The next higher order wave reslistance of a slender ship

with the almost flat bottom is

L_.o L_F (x,2)
Re = Effpraxflxdx dz + 2ffprgxf1xdx dz
(0] -Hl o O
L Fa (x,¥5)
-2[[ p[zg+%vef1x‘°‘]flxdx dz [36]
0O ©

where @3, ®3, and F; are given in [27), [ 28], and [29b]
respectively. If we consider that fix 1s almost indeperndent of

z near the free surface, the last integral will become

L
[p (Fgg + Vaflxz) Fg flxdx

O

From [ 28], [35] and t36], we can write
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Sicce f 4= 0 on the bottom,
e omitted., However., in acrual calculation it may be tetrne
inTegral wo

o 1f e

conalider chie formal corslderation of the totnom
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42N

m

©lerinate wne ralculation of locai alstarvance, vec

oo sider tne wave resistance due o a slrgularitv glstrlibtun o

rroags lagalioy ¢ thoorem tre contrpliourion from v
alivartarce l: zero {(see e.g., Lunde, 9%7). By tre same rezadn:
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we conslder the effect of ¢, , on the line source dlstribution

on the free surface

L fpal(x, 0, O)
-2p - %2 (x,0,0) fyxx + ®ax(x,0,0)f; x)dx
. O

0
L

=-2pfl (Fzg+—vaflx {—flxx'i'v

o

Fa +§%-ﬁf}ﬁ;%x
o .

[38]

If we add [38] in [37] the effect of the local disturbance
due to the surface line integral is eliminated within 0(e®),
and subtracting [38] from the last integral of [37] we obtain,

4 T/2
R = _TTE f €2 (Cla + 512) sec®8 as

0

T/2
- ‘ '.‘(‘) 5
2_[ et (c.C, + S.5,) ec"d de
o}
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where
o k zsec®®
o o cos

=ff dx dzVk fiye (koxsece)

So S sin
opys
k Csec?®@

C1 © cos

=jj d8AL VK _fig e (k Esecd)
Sy sin

S*
lpns
2
Cb L -koHsec 8 cos
3 = [ k *f (x,-H)ps (x,0,-H) e (k _xsech )dx
o) o)
b S . sin
0

CF L coSs

=f{¢3 (X, 0, 0)f1xx+ &axfl x} (koxsece )dx
SF o J |sin

Thus the higher order wave reslistance of slender ships
0(e®) 1s from the change of the ship submergence due to the
wave, the bottom effect, and the line integral due to the free
surface bounded internally by the ship surface. These higher
order effects are functions of the lowest order wave height'znd

the lowest order potential, which are zero at infinity,
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ORDER ANALYSIS AND DEPENDENCE ON ko

The selection of terms in each higher order for thin ships
and slender ships in the above analysis has been strictly for-
mal under the assumptlions that serles expansions N converge
for any small €, and all the variables behave properly. How-
ever this analysis would be incomplete if we did not consider
the actual situation which 1s highly dependent on the Green's
function [ 23] and the parameter k . 1In practice, for ordinary
merchant ships (low and medium speed ships) and fast ships, the
magnitude of the following parameters, viz, Froude number
F, = l/v-k_ol’.. » k. L = ki, beam-length ratlo, and draft-length

ratio are as shown in Table 1.

TABLE 1

Magnitude of Ship Parameters

Ordinary !

Merchant Ships | Fast Ships

Fr 0.33 — 0.18 | 0.33 — 1.5
1/k L = 1/k 0.11 — 0,033 [ 0.11 — 2.2 |
kDL Bk 9 — 30 9 — 0.55 |

Half-Beam Length Ratlio} 0.08 — 0.05 | 0.05 —~— 0.03

Draft-Length Ratlo 0.07 — 0.0% | 0.07 — .04
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Thus, when we consider physical quantities, non-dimersionallzed
with respect to L and V, it is easy to see that k; as a factor
to a term in our analysis affects the order of magnitude of
the term in the case of ordinary mercnant ships since It 1s
0(1/€). On the other hand, for fast ships k; may be consldered
as of 0(1).

As for the Green's function, we may separately estlimate
*he magnitudes of the local disturbance and the regular part
from the following simple ship. Namely, when we consider a

wedge ship whose waterline slope 1is

= = 3 < <
a_ O(e) iIn 0< x< ¢ and
fx(x,z) =(=20 c<x<l-c¢c)O0<-z<gd,
= -a l-c<x<1
)

rhe regular part of g o ony = O, C< x< 1 -2¢1s

T/ e
&ao /: k, zsec® @ ~k;asec38)
] a — e (l-e sin(x. xsecd) g9
X,reg T Si x(r. !
o)
Since

r s

T'/._ e
[sln (ky xsec®) 4@ = - = [Y,«(t) dr
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which 1s 0(1) for all k. x,

Ky 2 ~-K; a,
|¢x.reg| 280 min ‘e »1-e ) Yo(t) av

Since, for fast ships, k;d = 0(e), we o tain 1 - okt o(e) 1n

this case. Therefore we can wrlte

C(e) for 'ow and medium speeds

X,reg

L= o(e?) for aigh speeds

The local disturbance on the free surface 1s known to te cf tne
same crder rear tre boudy as the regular wave although Lt decays
very rapidly in the far fleld. It is evident from the expression
for ¢ *hat the derivatlve witn respect t{- any cvordinats norn-
Glmensicralized oy L Llncreases the factor ik, wnile the in‘egra-

"

tin recduces thnis factor,

From tre first twc terms of Greer ' s function L33,

i = 3
3 2
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that the continuous varlatior. of the waterline slope does not
affect the order of magnitude of the physical varliables since
the influence on the physical quantitles from the suddcn change
of the slope at the bow and stern dominates the other terms for
ordinary merchant ships and is of the same order as the other

terms in the case of fact ships.

From the boundary conditlon, we know that 9, is of the same
order as ¢xx/k; on the free surface and 1s equal to zero on the
ship's flat bottom. We also know, from the bourdary conditlor

on the ship surface, that wy = O(e) rear the ship sldes.

Thus we may tabulate the magnitudes of some physical guar-
tities near the ship surface, except wit'in a distance €*® from

the bow and stern as shown in Tablie 2.

TABLE 2
Order of Magnitudes of Some Physical Quantivles
| Crdinary
Mercnant Snly Fast Ships |
1/%: (s ) o(1) |
P | 3(¢* 1log ¢€) 2(e? 1o0g ¢)
- el
(e o{e
® 0, (¢) (<*) |
Wave Helght = ex/kg S(e*) {s?) ;
;__" ,
¢, 2(¢) ae)
Pex ¥y Pz (1) | ! 3
5 . o0y i QQ : 5
LR (1) {e*)
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Therefore the higher Qrder4potential [ 28] and wave re-
sistance [39] in the case of slender ships are only valid for
fast ships. For slender éhips‘at low Ffoade ﬁumbers, Qamely'
for ordinary merchant ships, the highéf‘order>pgﬁenﬁials are

rather the same as for the case of thin Shipsfshown in [24].

The lowest order non-dimensional WaVe‘pésistahee for or-
dinary merchant ships is the same as that glven in Equation [34],
but the magnitude should be listed as O(ef), as in the case of
fast ships, because the double integral in Equation [3%4] brings
out the factor 1/k® which is 0(e®). The higher order wave re-
slstance from ordinary merchant ships cah_bé obtained from [32].
This wili in~lude not only the effects needed for the fast ships
in [39] but also the other effects due to the nonlinear terms
of the pressure equation [31] viz -1/2(1x®+ ©, 5z ) which is
neglected 1a [39], as well ac additional terms in Qax shown in
(24]. Essentially the expression for the higher order wave re-
sista.ce of ordinary merchant ships will be the same as for thne
case of thin snips, However if k, is sufficlently large such
that e il 2 0(e), (e.g., ku= 30, H = 0.07, then el _ 0.122)
then the buttom effect and the effect due to the change of the

wetted surface of the ghip in [24] will become one order nigher.

Wren we use vthe Taylor serlec expanslon of Green's func-
tion [ 25], we have to notice the parameter k; e€fy, where the factor
ki comes in because of a differentiation of Green's function
with respect to y. The parameter k,¢ varies in the range of
0.+5 - 2.4 for ordinary merchant ships. Thus, in this case,

fre convergence of [25] 1s unreiiable in a certain part of f,
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~and the accurzcy of the first order theory (Michell's theory) ap-
pears tbﬁbe‘grossly affected and the convergence of the higher
order thebry>may be slow. Nevertheless, the situation is not
that serious due to the fact that kef; in [25] is a function

of x and z which is zero at x = 0 and x = 1, and to the prin-
ciple that ﬁhe ﬁeteﬁtial 1s dominantly influenced by the entrance

angle for low Froude nﬁmbers.
SINGULARITIES AT THE BOW AND STERN

Wheﬁbthe waterline slopes at the bow and the stern change
suddeniy,vmughas a logarithmic singularity at the origin while
®1x:and wlyvare finice there. This means that the slope of the
freeisurface FX and Fy at the origin is infinity. 1In addition

®1x ana the higher order derivativés are singular along the bcw
and the stern. Thus the present analysis cannot hold in the im-
mediate neighborhood of the bow and stern. However the princi-
pal effects of this singularity under the free surface is the
same as in the flow about a thin wing in an inflnite medium with-

out a free surface,.

This fact also indicates that the singular behavicr of the
line integral [20a] due to the point singularity at the origin
discussed earlier cannot be analyzed by means of this linear
theory. 1In fact if we consider the line 1lntegral in [23*] or
[(30al, in the physical space then we have

A
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1
I = g% (cngxl' CPSXIG) dy.
4

}Where s represents the length of the line 4 from the bow to each

point on 4, and 4, represents the length of L from the bow to
the stern of the ship. Integrating by parts we obtain

S =L1

. L
_ 2 o) dfy 2 o d af; dfy .
I = ko (Cpa le) as - kof le 1s (Cpa _ds) + ¥z x, s (98
s=0 o)
where
S

¢ ° EfG ds

X3 X1
silnce F = F =% and therefore afy = 0 at s = 0 and s = 4, .

X y as
Hence
L
- .2 o d dfy dfy
L= ko,/‘ Gy, Ts (2 ds) t P G gy ds
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In thils expression any effect from a point source or a point

doublet on the free surface is no longer included.
CONCLUDING REMARKS

In the first order shilp theory, whether we start to satisfy
the boundary condition on the free surface itself or on the mean
free surface does not make any difference in the result. Like-
wlise, whether the free surface 1s considered to e 1nternally
bounded by the shlp waterline at the free surface or not does
not affect the result of linear theory. However when we develop
a higher order theory, it seems necessary to consider these two
items very carefully. The application of the free surface con-
dition on the mean free surface cannot lead to the proper treat-
ment of the influence of the change of shlp wetted surface
caused by surface waves, This difficulty has been resolved by
distorting the coordinates. Furthermore the requirement that
the free surface be internally bounded by the ship waterline at
the free surface makes a large difference in the result obtailned.
The aforementioned influences appear in the second and higher
order terms, and are more important than the usually considered
nonlinear effect of the free surface boundary condition which
comes in only to the third and hlgher order terms in the case of
fast slender ships, and to the second and the higher order terms

in the case of thin ships and common speed slender ships.

The higher order analysls for common speed slender ships
(ordinary merchant ships) i1s rather the same as that for thin

ships, and the equations for the second order wave height and
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~ for the second order wave resistance are a little more compli=-

cated than those for fast siender ships.

. Essentially, the higher order wave theory considered here,
is Based on the assumption of the regular or asymptotlc con-
vergence of the series*expanéion of physical quantities. 1In
this respect ény higher order terms can be obtained from the
prgéent analysis., However, in that case, unless we consider
the viscosity and the surface tension, the theory higher than

the second order would be meaningless.

The numericai computation of the higher order wave form
or wave resistance due to a slender ship is not too complicated
in this age of high speed computers. It would be extremely in-
teresting to see the numerlcal results even for the case of
individual high order influences such as the line integral ef-
fect, the bottom effect, and others.
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